mos管损坏的原因分析|技术分享-尊龙凯时手机版
第一种:雪崩破坏
如果在漏极-源极间外加超出器件额定vdss的电涌电压,而且达到击穿电压v(br)dss (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。
在介质负载的开关运行断开时产生的回扫电压,或者由漏磁电感产生的尖峰电压超出功率mosfet的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩破坏。
典型电路:
第二种:器件发热损坏
由超出安全区域引起发热而导致的。发热的原因分为直流功率和瞬态功率两种。直流功率原因:外加直流功率而导致的损耗引起的发热。
· 导通电阻rds(on)损耗(高温时rds(on)增大,导致一定电流下,功耗增加)
· 由漏电流idss引起的损耗(和其他损耗相比极小)
· 瞬态功率原因:外加单触发脉冲
· 负载短路
· 开关损耗(接通、断开) *(与温度和工作频率是相关的)
· 内置二极管的trr损耗(上下桥臂短路损耗)(与温度和工作频率是相关的)
器件正常运行时不发生的负载短路等引起的过电流,造成瞬时局部发热而导致破坏。另外,由于热量不相配或开关频率太高使芯片不能正常散热时,持续的发热使温度超出沟道温度导致热击穿的破坏。
第三种:内置二极管破坏
在ds端间构成的寄生二极管运行时,由于在flyback时功率mosfet的寄生双极晶体管运行,导致此二极管破坏的模式。
第四种:由寄生振荡导致的破坏
此破坏方式在并联时尤其容易发生。
在并联功率mos fet时未插入栅极电阻而直接连接时发生的栅极寄生振荡。高速反复接通、断开漏极-源极电压时,在由栅极-漏极电容cgd(crss)和栅极引脚电感lg形成的谐振电路上发生此寄生振荡。当谐振条件(ωl=1/ωc)成立时,在栅极-源极间外加远远大于驱动电压vgs(in)的振动电压,由于超出栅极-源极间额定电压导致栅极破坏,或者接通、断开漏极-源极间电压时的振动电压通过栅极-漏极电容cgd和vgs波形重叠导致正向反馈,因此可能会由于误动作引起振荡破坏。
第五种:栅极电涌、静电破坏
主要有因在栅极和源极之间如果存在电压浪涌和静电而引起的破坏,即栅极过电压破坏和由上电状态中静电在gs两端(包括安装和和测定设备的带电)而导致的栅极破坏。
关键词索引: